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a b s t r a c t

The analysis of turbulent two-phase flows requires closure models in order to perform reliable computa-
tional multiphase fluid dynamics (CMFD) analyses. A spectral turbulence cascade-transport model, which
tracks the evolution of the turbulent kinetic energy from large to small liquid eddies, has been developed
for the analysis of the homogeneous decay of isotropic single and bubbly two-phase turbulence. This
model has been validated for the decay of homogeneous, isotropic single and two-phase bubbly flow tur-
bulence for data having a 5 mm mean bubble diameter. The Reynolds number of the data based on bubble
diameter and relative velocity is approximately 1400.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Current generation computer systems do not have enough com-
putational power to perform direct numerical simulations (DNSs)
of complex single and two-phase flow systems at high Reynolds
numbers. Thus good closure models for Reynolds-averaged Na-
vier–Stokes (RANS) computational multiphase fluid dynamic
(CMFD) analyses are still required in engineering analyses. Various
closure models have been developed in the past to approximate
turbulence phenomena in the RANS conservation equations for sin-
gle-phase flows (Pope, 2000). The complexity of these models
range from the Prandtl mixing length, k–e and other similar trans-
port models involving one or two transport equations (Wilcox,
2002), to more complex models (Lumley, 1978), where turbulent
anisotropy is evaluated. There has been some success in extending
k–e type models to bubbly two-phase flows (Lahey, 2005), but
these models are limited to low void fractions.

The spectral cascade model presented in this paper belongs to
the class of models called shell models (Bohr et al., 1998). Shell
models consider a discrete set of wave vectors, or shells, in Fourier
space and solve a set of differential equations using one or two
variables per shell. A good overview of various shell models is gi-
ven by Bohr et al. (1998). Desnyanski and Novikov (1974) proposed
the idea of using shells to model the energy cascade process and to
be able to reproduce the Kolmogorov spectrum in terms of appro-
priate differential equations for the averaged velocity field in Fou-
rier space. Ohkitani and Yamada (1989) introduced a shell model
(the so-called GOY model) with one complex variable per shell as
a generalization of Gledzer (1973) model which had one real vari-
able per shell. The GOY model features interactions between near-
est and next nearest neighboring shells and conserves energy as
well as volume in phase space.
ll rights reserved.

: +1 518 276 3055.
Schiestel (1987) introduced a multiple-time-scale model which
is based on partial integration of the spectral evolution equations
in wavelength intervals. Schiestel used the so-called Kovasznay
hypothesis (Hinze, 1975) to model the spectral transfer. In the
present work, we have also used a Kovasznay transfer term. Chao-
uat and Schiestel (2005) have also used this spectral transfer con-
cept to propose a new model for large eddy simulation (LES) by
tracking the energy transfers for the sub-grid turbulent kinetic
energy.

Spectral turbulent kinetic energy information can help us model
the energy transfers between liquid eddies of different sizes and
the energy exchanges between dispersed bubbles and liquid ed-
dies. Single-phase experiments on the decay of isotropic turbu-
lence (Comte-Bellot and Corrsin, 1966) give the energy spectrum
at different distances from the turbulence generating grids. Also,
Kang et al. (2003) used an active grid to generate a relatively high
Reynolds number isotropic turbulent flow and proposed an analyt-
ical expression based on their experimental data for energy spec-
trum’s time dependence for the decay of single-phase turbulence.

Jairazbhoy et al. (1995a,b) used a spectral cascade turbulence
model, coupled with a droplet number density transport model,
to analyze neutral buoyant droplets immersed in homogeneously
turbulent gas, in which breakup and coalescence were modeled.
If coalescence and breakup are not considered then the spectral
cascade model can be greatly simplified, and this is the approach
we have taken.

DNS can also provide insight into the energy transfers and eddy
interactions. Domaradzki and Rogallo (1990) and Domaradzki et al.
(1994) analyzed the energy spectrum and energy transfers in wave
number space using DNS. It was concluded that 75% of the liquid
eddy interactions occur in local wave number triads with the ratio
of the two legs of the triad being less than 2 (i.e., between neigh-
boring eddy sizes).

Currently there is not universal agreement in the literature on
the slope of the energy spectrum for bubbly two-phase flows. Quite
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a few experiments and DNSs report a slope of �5/3, or one ‘‘slightly
less steep than �5/3” (Rensen et al., 2005), while others have found
different slopes. To properly analyze the slopes of the energy spec-
trum one must be careful to look at the same range and the same
system of coordinates when comparing these slopes. Generally, we
may have two separate slopes in the energy spectrum; one slope in
the inertial subrange and a steeper slope in the dissipation range.
For example, Lance and Bataille (1991) report a �5/3 slope for
the inertial subrange of turbulent single-phase flow and �8/3 for
their corresponding bubbly two-phase flow experiments. However,
a careful analysis of their two-phase spectrum (see Fig. 1) shows
that Lance and Bataille (1991) actually had a slope between �8/3
and �11/3 in the high wave number dissipation range and a
��7/6 slope in the inertial subrange of the corresponding single-
phase flow. Since �7/6 is slightly less steep than �5/3, their results
are in substantial agreement with the data of Rensen et al. (2005).

Bunner and Tryggvason (2003) performed a 3-D DNS of 27
deformable bubbles rising in a periodic domain. They analyzed
the induced turbulent kinetic energy spectrum in the liquid phase
and found a �3.6 slope in the dissipation region. This slope is very
close to a �11/3 slope (i.e., �3.67) which, as noted above, can also
be seen in the data of Lance and Bataille (1991).

2. Discussion

This paper describes a single and two-phase spectral turbulent
cascade-transport model which was developed and used for the
analysis of the homogeneous decay of isotropic turbulent flows.
This spectral model tracks the evolution of turbulent kinetic energy
through wave number space. The sum of the cascade model’s
transport equations for turbulent kinetic energy (k) yields the total
turbulent kinetic energy transport equation used in k–e models
(Jones and Launder, 1972). A dispersed phase can influence the tur-
bulent kinetic energy of the continuous liquid phase and models
have been developed and used for bubbly two-phase flow calcula-
tions by superimposing a bubble-induced turbulence source term
in the single-phase k–e transport equations (Lahey, 2005). How-
ever, this non-spectral superposition model is only valid for low
void fractions (Lahey, 2005).
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Fig. 1. One-dimensional spectrum of Lance and Bataille (1991). Experiments for
different void fractions, a (UL = 0.9 m/s; X/M = 36.4; Db = 5 mm). The Taylor ðj1

K;j2
KÞ

and Kolmogorov ðj1
K;j2

KÞ scales shown for both single (1) and two-phase (2) cases;
the bubble’s scale ðj2

BÞ is also shown, for Db = 5 mm.
The turbulent cascade model presented herein is based on a
spectral representation of the turbulent kinetic energy of the con-
tinuous liquid phase, and it follows the work of Lewalle and Tavla-
rides (1994). The energy is split into spectral bins and each bin
contains the turbulent kinetic energy for liquid eddies of specific
sizes. The model considers a net turbulent cascade of the kinetic
energy from the largest liquid eddies of the flow to the smallest
ones. Significantly, knowledge of the spectral distribution of the
turbulent kinetic energy allows one to eliminate the empirical tur-
bulent dissipation rate transport equation, using an explicit
expression instead.

3. The cascade model

In a spectral turbulent cascade model the energy of the turbu-
lent liquid eddies of each characteristic group size is represented
with a separate variable. As shown schematically in Fig. 2, the
whole spectrum of eddy sizes is covered with these discrete energy
bins. Thus, at any given point the sum of the spectral energies
equals the total turbulent kinetic energy of the continuous liquid
phase:

k ¼
XN

m¼1

km ð1Þ

where N is total number of spectral bins.
Since we have to cover the whole energy spectrum, we must

estimate the largest and the smallest eddy sizes for a given prob-
lem. The smallest eddy size of interest corresponds to the Kol-
mogorov scale (kN � g = 2p/jN, where g = m3/4/e1/4) while the
largest scale depends upon the geometry of the problem (k0 = 2p/
j0). If the number of bins is insufficient in the dissipation region
then we will observe an accumulation of the energy transferred
into this region. Also the accuracy of the results may be lost if there
is an incorrect cutoff in the turbulence production zone.

The boundaries of each spectral bin are defined as:

jm ¼ njm�1 ¼ nmj0 ð2Þ

where the parameter n sets the spectral resolution of the model (i.e.,
how well we want to resolve the energy spectrum).

We define the energy bins using a turbulent kinetic energy den-
sity function, E(j):

km ¼
Z jm

jm�1

EðjÞdj ð3Þ

where E(j) is the turbulent kinetic energy density function, j is the
wave number, defined as j = 2p/k, and k is a liquid eddy’s character-
istic length scale.
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Fig. 2. Turbulent kinetic energy bins, N = 4.
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Fig. 3. Spectral transfer of energy between bins (for bin-m).
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We define every liquid eddy size range by a bin and the energy
of those eddies as the bin energy. The next step is to develop an
equation for bin energy conservation. As a basis for developing
the cascade model’s transport equations we use the well-known
total turbulent kinetic energy transport equation (e.g., Wilcox,
2002):
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where on the right-hand side we have production, dissipation,
molecular diffusion, turbulent transport and pressure diffusion
terms, respectively. This equation can be rigorously derived using
the Navier–Stokes equations and Reynolds averaging. For the single
and two-phase cascade models we assume the Boussinesq approx-
imation is valid since it is normally assumed for most turbulent ki-
netic energy based models. Following commonly used
approximations for the turbulent transport and pressure diffusion
terms we rewrite Eq. (4) as,
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where Sij ¼ 1
2 ðoUi=oxj þ oUj=oxiÞ is the mean rate of strain, dij is the

Kroneker delta function and rk is a model constant.
The spectral cascade model involves the same basic compo-

nents as total turbulent kinetic energy transport equation, Eq.
(5). That is, production, dissipation and diffusion. We must also in-
clude a spectral transfer term to account for the energy exchange
between different wave number bins. Thus, the general form of a
single-phase version of the spectral turbulent cascade transport
equation for bin-m is (Lewalle and Tavlarides, 1994):

Dkm

Dt
¼ Pm � em þ Dm þ Tm ð6Þ

where Dm, Pm, em and Tm are the diffusion, production, dissipation
and transfer of the turbulent kinetic energy in bin-m, respectively.
For the problem being considered herein, the decay of homoge-
neous turbulent flow, there are no diffusion and production terms
since we do not have gradients of mean quantities. That is, the ab-
sence of a mean velocity gradient eliminates the production term
(Pm) and the turbulent kinetic energy’s uniform distribution elimi-
nates the diffusion term (Dm). Thus Eq. (6) reduces to:

Dkm

Dt
¼ Tm � em ð7Þ

The spectral transfer term (Tm) is responsible for the exchange
of energies between the adjacent bins. As shown schematically in
Fig. 3, we consider the four possible parts of this term: the energy
inflows through the left boundary of the bin, the energy outflows
through the right boundary as well as the possible outflows
through left and inflows through the right boundaries (i.e., a back-
ward cascade):

Tm ¼ T l
in � T l

out þ Tr
in � Tr

out ð8Þ

Let us consider the first term in detail. As shown in Fig. 3, at the
left boundary the transfer of turbulence occurs with wave number
jm�1. Following a donor-cell type approach and using dimensional
analysis, as proposed by Kovasznay (Hinze, 1975), we write the fol-
lowing expression:

T l
in / jm�1 km�1

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p� �
ð9Þ

Here km�1 is the quantity being transferred from the left bin,
ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm
p

is the characteristic speed of the transfer, Em = km/Djm is the energy
density in bin-m, Djm = jm � jm�1 is the width of wave number
bin-m, �jm ¼ 1=2ðjm�1 þ jmÞ is the characteristic wave number of
bin-m, and jm�1 is the wave number associated with the transfer.
Similarly, for all other terms we have:

T l
out / jm�1 km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em�1 �jm�1

p� �
ð10Þ

Tr
in / jm kmþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p� �
ð11Þ

Tr
out / jm km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emþ1 �jmþ1

p� �
ð12Þ

Introducing proportionality constants, and combining Eqs. (8)–(12),
we can write the final expression for the transfer term of bin-m as:

Tm ¼ C1jm�1km�1

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p
� C1jmkm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emþ1 �jmþ1

p
� C2jm�1km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em�1 �jm�1

p
þ C2jmkmþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p
ð13Þ

where C1 = 1.2 and C2 = 0.38 are model constants which quantify
the rate of forward and backward cascade turbulent energy transfer,
respectively. As will be discussed in more detail subsequently, the
values for C1 and C2 were determined from a well-characterized
data set (Kang et al., 2003) and then were frozen and used in all sub-
sequent model assessments.

The definition of the transfer term given in Eq. (13) is dimen-
sionally consistent as a source term for the spectral turbulent ki-
netic energy transport equation. It also satisfies the restrictionPN

m¼1Tm ¼ 0 which is required to obtain the total turbulent kinetic
energy equation by adding together the individual bin energy
equations, and, as shown in Appendix A, it implies a �5/3 slope
in the inertial subrange for single-phase flow in accordance with
Kolmogorov’s law (Pope, 2000).

A bin’s dissipation comes from the following fundamental equa-
tion (Pope, 2000):

eðja ;jbÞ ¼
Z jb

ja

2mj2EðjÞdj ð14Þ

which represents the contribution to the dissipation rate, e, from
turbulent motion in the wave number range (ja,jb). Thus, in order
to obtain the value of the dissipation rate in bin-m, we rewrite Eq.
(14) as:

em ¼
Z jm

jm�1

2mj2EðjÞdj ð15Þ

We can approximate E(j) in the interval (jm�1,jm) as being a
constant, E(j) ffi km/Djm, where Djm = jm � jm�1.

Thus, performing the integration in Eq. (15):

em ffi
Z jm

jm�1

2mj2 km

Djm
dj ¼ 2m

km

Djm

Z jm

jm�1

j2 dj
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km j3
		jm km j3 j3� �
Cp and Kutateladze number (Ku) dependence on mean liquid velocity, UL, for
Db = 5 mm

UL (m/s) Ku Cp

0.4 3.85 0.045 + 55a2

0.5 4.46 0.045 + 95a2

0.6 5.08 0.045 + 135a2

0.8 6.30 0.045 + 215a2

0.9 6.91 0.045 + 255a2

Table 2
Relative velocity (UR) and drag coefficient (CD) dependence upon void fraction (a), for
Db = 5 mm

a (%) CD UR (m/s)

0.01 1.229 0.2307
0.5 1.231 0.2305
1.0 1.233 0.2303
1.5 1.235 0.2301
2.0 1.238 0.2298
2.5 1.240 0.2296
3.0 1.242 0.2294
em ffi 2m
Djm 3
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 �
ð16Þ

One of the inherent advantages of using a spectral turbulent
cascade model for two-phase flows is the elimination of the empir-
ical dissipation rate transport equation and the capability of adding
a bubble energy source term into different energy bins correspond-
ing to the size of the various bubbles (i.e., for polydispersed flows).
In this way we can mechanistically model the two-phase energy
spectrum through the nonlinear interactions between the bub-
ble-induced and shear-induced liquid eddies of different sizes.

4. Bubble source term

For the case of polydispersed bubbly flow in which there is no
bubbly break up and coalescence, we can split the bubbles into
NS size groups. Each of these size groups will have a set of charac-
teristic parameters, such as the volume fraction occupied by the
bubbles in that group, the mean diameter of the bubbles and the
relative velocity of the bubbles of the group. These parameters will
determine how a particular bubble size contributes to the turbu-
lent kinetic energy of the flow and how this energy contribution
modifies the energy spectrum of the flow. We assume that linear
superposition can be used to compute the influence of all the dif-
ferent size groups on the turbulent kinetic energy spectrum. Since
only monodispersed experimental data are available we use only
one size group of bubbles in the present work (NS = 1).

Lance and Bataille’s (1991) experiments were chosen to validate
the performance of the spectral turbulent cascade-transport model
since these experimental data are comprehensive, self-consistent,
and provide the energy spectrum for decaying single-phase and
bubbly two-phase homogeneous grid turbulence.

The bubble source term which was used herein comes from a
phenomenological model proposed by Lahey (2005):

Ui ¼ Cpi
1þ C4=3

Di

� �
aiU

3
Ri
=Di; ðm2=s3Þ ð17Þ

where CDi
is the drag coefficient for a dispersed bubble of size

group-i, ai is the local gas volume (i.e., void) fraction of size
group-i, URi

is relative velocity of size group-i and Di is the
mean bubble diameter of size group-i. This term represents
the bubble’s total contribution to the induced liquid phase
turbulence from a bubble in size group-i (i.e., the pseudo-turbu-
lence due to liquid displacement by the bubbles and their
wakes). The bubble-induced turbulence is distributed among
the various wave number bins as described later in the paper.
It should be noted that Eq. (17) has only been verified (Lahey,
2005) for bubbly two-phase flows with bubble diameters rang-
ing from about 1.0 to 5.0 mm.

The following empirical expression was used for the value of
the parameter Cpi

:

Cpi
¼ b1 þ ðb2Kui � b3Þa2

i ð18Þ

where Kui ¼
ðULþURi

Þq1=2
L

½rgðqL�qGÞ�
1=4 is the Kutateladze number, b1 = 0.045,

b2 = 65.0, b3 = 195.0, UL is the mean liquid phase velocity, qL and
qG are the liquid and gas phase densities, respectively, and r is
the surface tension. The set of the Kutateladze numbers and the
resulting Cpi

dependences for the experiments which were consid-
ered herein are given in Table 1.
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Interestingly, Ruggles et al. (1988) found a very similar func-
tional form for the virtual volume coefficient,

CVMi
¼ c1ð1þ c2a2

i Þ ð19Þ

and, from potential flow theory, we know that for an immersed
sphere (Drew and Passman, 1998), Cpi

¼ 1=2CVMi
.

It should be noted that the empirical expression given in Eq.
(18) implicitly accounts for non-spherical bubble shapes, bubble
interactions and the observed complicated trajectories of the bub-
bles in the experiments of Lance and Bataille (1991).

In order to evaluate the drag coefficient ðCDi
Þ dependence upon

void fraction for the two-phase flow under consideration we used a
distorted fluid particle regime correlation for bubbly flows (Ishii
and Hibiki, 2006):

CDi
ðaiÞ ¼

ffiffiffi
2
p

3
NlNRei

1þ 17:67ð1� aiÞ1:3

18:67ð1� aiÞ1:5

 !2

ð20Þ

where NRei
� DiqL jURi

j
lc

, Nl � lc qLr
ffiffiffiffiffiffi
r

gDq

q� �1
2

,
. Here Di is the diameter

of the dispersed bubbles in size group-i, lc is liquid’s dynamic vis-
cosity, r is the surface tension, and Dq = qL � qG is the density dif-
ference between the liquid and gas phases.

For terminal rise conditions there is a balance between the drag
and buoyancy force for a rising bubble in stagnant fluid and we can
derive the following relative velocity dependence on drag
coefficient:

URi
ðaiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DigDq

3qLCDi
ðaiÞ

s
ð21Þ

Thus, we have a coupled system of equations, Eqs. (20) and (21),
to determine the drag coefficient and the relative velocity depen-
dence on void fraction. Typical results for atmospheric pressure
air/water flows are given in Table 2.

5. Mesh independence of wave number bins

The spectral cascade-transport turbulence model allows for dif-
ferent resolution in wave number space. In order to achieve consis-
tent results when using different wave number mesh resolutions
we have to implement this into the model. It is known that strong
interactions occur mostly between the liquid eddies of similar sizes
(Pope, 2000). In particular, more than 75% of the energy exchange
happens within the 1

2 j to 2j range of eddy sizes for a given wave
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number, j. Eqs. (8)–(13) are thus suitable for the case of n = 2 (see
Eq. (2)). In contrast, if we choose a finer wave number mesh for a
given wave number, j, we have to account for interactions not only
between neighboring bins, but also among all the other bins in the
range of 1

2 j to 2j.
We may assume the following form of an energy transfer term

in bin-m for the case n – 2:

T l
in /

XNn

j¼1

bjjm�1km�j

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p
ð22Þ

where Nn is the number of neighbor bins with j P 0.5jm (since we
are considering only energy transfers from the left bins in this term)
and bj is assumed to be a set of weights having a Gaussian distribu-
tion in the logarithmic scale.

The weights, bj, were computed by averaging the following dis-
tribution function over a wave number bin:

f ðjÞ ¼ 1
r̂
ffiffiffiffiffiffi
2p
p exp � logðjÞ � logð�jÞ½ �2

2r̂2

 !
ð23Þ

where r̂ ¼ 0:225 is the standard deviation and �j is the left or right
boundary of the interacting bin, depending on the direction of the
interaction. The value of r was chosen in such way that 75% of
the total spectral interaction of wave number j would occur with
wave numbers p in the range (Domaradzki and Rogallo, 1990),
j/2 6 p 6 2j.

Let us consider an interaction between bin-m and bin-m � j. The
following integral is used to compute the weight:

b�j ¼
Z jm�j

jm�j�1

1
r̂
ffiffiffiffiffiffi
2p
p exp � logðjÞ � logðjm�1Þ½ �2

2r̂2

 !
dj ð24Þ

Here we used equal to the left boundary of the bin-m, jm�1, since
the interacting bin (m � j) is located to the left of the bin-m. The
integration is performed over bin-m � j and the integral does not
depend on m if the log-uniform scaling of the wave number mesh
is used.

Table 3 tabulates a typical set of weight coefficients. Negative
values of j designate the location of a neighbor bin on the left of
a current bin, and positive values correspond to the neighbor bin
on the right. For example, if we want to compute the weighting
of the contribution of the spectral transfer term to bin-10 from
bin-8, we use j = �2. Including the other three components of the
spectral transfer term we obtain a generalization of Eq. (13):

Tm ¼ C1

X�1

j¼�Nn

bjjm�1kmþj

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p
� C1

XNn

j¼1

bjjm�1þjkm

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emþj �jmþj

q
� C2

X�1

j¼�Nn

bjjmþjkm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emþj �jmþj

q
þ C2

�
XNn

j¼1

bjjmkmþj

ffiffiffiffiffiffiffiffiffiffiffiffi
Em �jm

p
ð25Þ
Table 3
Sample distribution coefficients bj for the case of n = 1.37 (note, bj = b�j)

j bj

�5 0.007
�4 0.029
�3 0.080
�2 0.159
�1 0.224

1 0.224
2 0.159
3 0.080
4 0.029
5 0.007
In summary, in Eq. (25) we use the weights bj (Table 3) required
to ensure the cascade-transport model’s independence of the wave
number grid.

In order to verify that the energy leaving bin-m0 arrives at bin-
m1 = m0 + j in the forward transfer process we can compute the
corresponding components of the transfer terms for the considered
bins. Using one component of the right boundary’s outflow term in
Eq. (25) for bin-m0 we write:

Tm1
m0
¼ �C1bjjm0�1þjkm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em0þj �jm0þj

q
ð26Þ

The left boundary inflow for the bin-m1 can be written as:

Tm0
m1
¼ C1b�jjm1�1km1�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em1

�jm1

q
ð27Þ

Noting that bj = b�j we can conclude that Tm1
m0
¼ �Tm0

m1
and hence,

as required, Eq. (25) satisfies pair-wise energy conservation.
Note that both Eqs. (13) and (25) are developed in such a way as

to satisfy the required constraint that the sum of all the spectral
components of the transfer term does not contribute to the total
turbulent kinetic energy. That is,

XN

m¼1

Tm ¼ 0 ð28Þ

The turbulent wake behind a bubble may also introduce turbu-
lent energy into the flow (Lance and Bataille, 1991). As can be seen
from experiments (Veldhuis et al., 2005), the sizes of the turbulent
liquid eddies in the bubble’s wake range from the bubble size
down to very small liquid eddies, possibly close to the Kolmogorov
scale. The generalization of Eq. (7) for the decay of homogeneous,
isotropic bubbly flows is:

Dkm

Dt
¼ Tm � em þ Sm ð29Þ

where Sm ¼
PNS

i¼1cmi
Ui is the sum of contributions from the bubbles

of various size groups-i, to wave number bin-m; cmi
is the weight of

the bubble’s contribution, for a bubble in size group-i, to the turbu-
lent kinetic energy spectrum in bin-m. These weighting factors are
shown in Fig. 4, where

PN
m¼1cmi

¼ 1 for all size groups, i = 1, . . .,NS.
Fig. 4 also shows the spectral distribution of the various terms in
Eq. (29) for 24 wave number bins and a monodispersed bubbly flow
(i.e., NS = 1). We note that the various terms are balanced. The wave
number axis has been normalized with the bubble’s diameter such
that we add most of the bubble’s energy between jDb = 1 and the
Kolmogorov length scale.

Note that the shape of the bubble source term’s distribution
(green1 circles/line in Fig. 4) ensures consistency with the observed
slopes in the measured turbulent kinetic energy spectrum, as noted
previously, and the bubble source term has a peak at jDb = 1. In par-
ticular, in the ‘‘inertial subrange” the bubble source spectral density
decays as j�1/4 while in the dissipation range the decay rate changes
to j�1. Ilic et al. (2007) found from a DNS of bubble-driven liquid
flows that for the case of bubble-dominated turbulence the pre-
dicted energy spectrum slope is �1 in the high frequency range.
Assuming that the bubbles in grid-generated turbulence give the
same spectral contribution to the liquid turbulent energy we use this
slope in the dissipation range for the bubble’s source term. The
choice of the j�1/4 and j � 1 slopes results in an energy spectrum
which is in agreement with the slopes (i.e., �7/6 and �11/3) in
two-phase data sets (Lance and Bataille, 1991; Lance, 1979), as will
be discussed subsequently.
1 For interpretation of the references to color in Fig. 4, the reader is referred to the
web version of this paper.
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6. Model assessment

Kang et al. (2003) measured the decay of active-grid-generated
single-phase isotropic turbulence at relatively high Reynolds num-
ber (i.e., Rek = 720). They provided spectral information of the tur-
bulent kinetic energy during decay, and these single-phase data
have been used to assess our cascade model. We used the
turbulent kinetic energy spectrum at the first measuring station
(X/M = 20) as an initial condition for the turbulent cascade model.
The results of the simulation compared to the data of Kang et al.
(2003) are given in Fig. 5 (the cascade model used 24 wave number
bins to represent the spectrum). We see excellent agreement
between the cascade model and these data.

To further assess the model’s performance the data of Lance and
Bataille (1991) was also used. These data are from a series of exper-
iments on decaying homogeneous, isotropic single and bubbly
two-phase grid-generated turbulence, which were performed over
a range of void fractions from 0% to 3% and at mean liquid veloci-
ties ranging between 0.4 and 0.9 m/s. The turbulent intensity, u0/UL,
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Fig. 5. Turbulent kinetic energy spectra at different measuring stations. Data of
Kang et al. (2003), (lines), compared to single-phase cascade model results,
(symbols).
was measured at four axial locations, X (normalized with respect to
the mesh spacing M), downstream of turbulence-generating grid:
X/M = 21.4, 31.4, 36.4 and 51.4. The results for various mean veloc-
ities, UL, were given by Lance (1979). Significantly, Lance and
Bataille (1991) observed that in their experiments the isotropy of
the initial turbulent field was not changed by the injection of the
air bubbles. Thus, the spectral cascade model, which was
developed under assumption of isotropy, is also applicable to the
two-phase bubbly flows considered by Lance and Bataille (1991).

Fig. 1 shows the single and two-phase energy spectra reported
by Lance and Bataille (1991). We can observe a �5/3 slope in the
inertial subrange and �5 slope in the dissipation range for turbu-
lent single-phase flow. For turbulent two-phase flows the equiva-
lent2 ‘‘inertial subrange” slope is about �7/6 and the equivalent2

‘‘dissipation region” is about �11/3, having a relatively small re-
gion with a �8/3 slope. There is no sharp transition from �5/3 to
�8/3 or �11/3, however, as can be seen, all those slopes can be
found in different ranges of the turbulent kinetic energy spectrum.
As noted previously, Bunner and Tryggvason (2003) also observed
a �3.6 � �11/3 slope in their DNS results for turbulent deformable
bubbly flow.

In order to specify the initial conditions for the spectral cascade
model simulations of Lance and Bataille’s (1991) experiments we
used the functional form of the 3-D turbulent kinetic energy spec-
trum given by Kang et al. (2003):

EðjÞ ¼ ce2=3j�5=3 jK

½ðjKÞa2 þ a1�1=a2

" #5=3þa3

e�a4jg ð30Þ

The procedure described in Kang et al. (2003) was used to ob-
tain the coefficients in Eq. (30), c = 8.0, a1 = 0.39, a2 = 1.2,
a3 = 12.0, a4 = 5.0, and the following flow parameters were used:
integral length scale, K = 0.02 m, Kolmogorov scale,
g = 5.3 � 10�4 m, turbulent dissipation rate, e = 0.004 m2/s3.

An analytical formula given by Pope (2000) was used to convert
the 3-D energy spectrum (E), in Eq. (30), into the corresponding
1-D energy spectrum (E11) so that it could be compared directly
with Lance and Bataille’s (1991) results:

E11ðj1Þ ¼
Z 1

j1

EðjÞ
j

1� j2
1

j2

� �
dj ð31Þ

Fig. 6 shows the predicted 1-D energy spectra for both single
and two-phase flows at UL = 0.9 m/s, for a mean air bubble diame-
ter of Db = 5.0 mm. The turbulent kinetic energy density was non-
dimensionalized with respect to the mean turbulence level, so that
all the spectra could be compared on the same scale (i.e., using the
same scaling as was used by Lance and Bataille (1991)). The
predicted single-phase energy spectrum (the red3 circles/line in
Fig. 6) shows the well-known �5/3 slope in the inertial transfer
range and a �5 slope in the dissipation range, while the predicted
two-phase spectra for void fractions between 0.5% and 3.0%, show
a �7/6 slope in the equivalent ‘‘inertial subrange” and a �11/3
slope in the equivalent ‘‘dissipation region”. As noted in Fig. 1,
these slopes can be observed in the data of Lance and Bataille
(1991) and have also been seen by others in their experiments.
Thus, the cascade model appears to be capable of predicting the
observed energy density spectrum for decaying homogeneous,
isotropic turbulent single and two-phase bubbly flows.

Figs. 7 and 8 show the spatial evolution of the turbulent inten-
sity compared to the data of Lance and Bataille (1991) and Lance
(1979), respectively, where the turbulent intensity was defined as:
2 Due to bubble-induced turbulence, in bubbly two-phase flows there is no pure
inertial subrange and dissipation region as in single-phase turbulent flows.

3 For interpretation of the references to color in Fig. 6, the reader is referred to the
web version of this paper.
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u0

UL
�

ffiffiffiffiffiffiffiffiffiffiffi
2k=3

p
UL

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02 þ v02 þw02Þ=3

p
UL

ð32Þ

Here k is the total turbulent kinetic energy of the liquid and U � UL

is the mean liquid velocity of the one-dimensional grid generated
turbulent flow. The scale of the abscissa is normalized by the grid
mesh spacing, M = 0.04 m, used in the experiments of Lance and Ba-
taille (1991) and Lance (1979).

It should be noted that because of the characteristics of the
intrusive hot film probe which was used in these experiments
the larger the mean flow velocity, UL, the more reliable the two-
phase data. That is, because of surface tension, at low mean liquid
velocities, a hot film probe has a more difficult time penetrating
the bubbles and they may not cleanly detach from it, both of which
may adversely affect the measurements.
Anyway, as can be seen, the turbulent cascade-transport model
shows good agreement with the experimental data over a wide
range of flow parameters. Moreover, as expected, the liquid turbu-
lence level increases as void fraction increases. Thus it appears
that, unlike non-spectral two-equation turbulent kinetic energy
transport models, bubble-induced and shear-induced turbulence
production mechanisms can be superimposed in a spectral turbu-
lent cascade transport model even for larger void fractions (i.e.,
a > 2%).

Indeed, Lance and Bataille (1991) observed an interesting non-
linear behavior of the excess (i.e., the bubble-induced) turbulent
kinetic energy with respect to void fraction. Previous non-spectral
two-phase k–e models (Lahey, 2005) were unable to predict this
behavior. Fig. 9 shows spectral cascade model predictions and
the data for various levels of fluctuations generated by the grid
ðu00=URÞ. As Lance and Bataille (1991) noted, below some critical
void fraction, ac, the behavior of the non-dimensional excess
turbulent kinetic energy (i.e., u02E =U2

R, where u02E � u02 � u020 ;
u020 and u02 are the single and two-phase turbulent kinetic energies,
respectively) does not depend upon the grid-generated turbulent
intensity. Moreover, for a < ac, the excess turbulent kinetic energy
increases linearly with void fraction (a). In contrast, for void frac-
tions above this critical value there is a strong dependence on
u00=UR. Previous two-phase models (Lahey, 2005; Nigmatulin,
1979) were unable to predict this non-linear phenomenon due to
their linear, or near linear, void fraction dependence and thus, at
best, these models were accurate only for low void fractions (i.e.,
a < ac).

In particular, let us consider the bubble-induced turbulence
model of Nigmatulin (1979) for monodispersed bubbly flow:

sT
clðPIÞ ¼ aclaqcl 3UR 	 URIþ URUR

h i
ð33Þ

where for spherical bubbles, acl = 1/20. Assuming that the mean rel-
ative velocity vector’s only non-zero component is stream-wise (i.e.,
UR = [UR,0,0]), we can compute the bubble-induced turbulent ki-
netic energy by taking the trace of Eq. (33):

u02E �huiuiiE¼ acla traceð3UR 	URIÞþU2
R

h i
¼ acla½9U2

RþU2
R� ¼

1
2
aU2

R

ð34Þ

Thus, the non-dimensional excessive turbulent kinetic energy
based on Nigmatulin (1979) model of bubble-induced turbulence
is:

u02E
U2

R

					
N

¼ 1
2
a ð35Þ

Let us next consider this dependence for the bubble source
model that we have used (Eq. (17)). Lopez de Bertodano (1992)
proposed the following first-order relaxation transport equation
for bubble-induced turbulence:

acl
Dkb

Dt
¼ r 	 aclmTrkb þ

1
sb
ðkba � kbÞ ð36Þ

where acl is liquid phase volume fraction (acl = 1 � a), kba is the
asymptotic value of the bubble’s kinetic energy, and sb is a relaxa-
tion time for the bubble’s energy transfer to the liquid turbulence:

sb ¼
Db

UR
ð37Þ

Since the last term in Eq. (36) represents the bubble source term
we can write, using Eqs. (36) and (17):

1
sb
ðkba � kbÞ ¼ Cpð1þ C4=3

D Það1� aÞU3
R=Db ð38Þ
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Using Eq. (37) we conclude:

kba � kb ¼ Cpð1þ C4=3
D Það1� aÞU2

R ð39Þ

Thus, since for atmospheric pressure air/water bubbly flows the
kinetic energy of the bubbles and the liquid are strongly coupled
(Drew and Passman, 1998), the excess of turbulent kinetic energy
implied by the bubble source term in Eq. (17) for monodispersed
bubbly flow is:

u02E
U2

R

					
L

¼ 2Cpð1þ C4=3
D Það1� aÞ ¼ 1

2
ð1þ C4=3

D Það1� aÞ ð40Þ

where Cp = 0.25 for a spherical bubble (Drew and Passman, 1998).
Fig. 9 shows the comparison between the Nigmatulin (1979),

Eq. (35), and Lahey (2005), Eq. (40), non-spectral bubble-induced
turbulence models, the experimental data of Lance and Bataille
(1991) and the spectral cascade model’s predictions. For the range
of void fractions of interest, both Nigmatulin’s and Lahey’s non-
spectral models show a nearly linear dependence with void frac-
tion on the bubble-induced turbulent kinetic energy of the liquid.
As can be noted, at higher void fractions (a) these models fail to
predict the non-linear behavior of the bubble-induced turbulence
energy. In contrast, when using Eq. (17) within the spectral turbu-
lent cascade model one is able to predict these data. That is, the ob-
served non-linear dependence on void fraction is predicted when
the effect of the bubble(s) is introduced into the appropriate spec-
tral bin.

An additional advantage of spectral modeling is the opportunity
to analyze polydispersed bubbly flows. The ability to introduce
source terms into the proper scales of turbulence makes the spec-
tral cascade model a better choice over classical two-equation (e.g.,
k–e) models for use in multiphase flow modeling.

7. Conclusions

The spectral turbulent cascade-transport model presented here-
in predicts single and bubbly two-phase flows over a fairly wide
range of flow conditions. In particular, it properly predicts the en-
ergy spectrum evolution in both the wave number and spatial do-
mains for decaying homogeneous, isotropic turbulent flows.
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Appendix A. Energy spectrum’s slope derivation based on the
spectral cascade model equations

Consider the inertial subrange of a single-phase turbulence ki-
netic energy spectrum. In this range we do not have any significant
contribution from either viscous dissipation or energy production.
Thus, using Eq. (7), we can write the equation for evolution of en-
ergy in this range as:

dkp

dt
ffi Tp ðA:1Þ

where

Tp ¼ C1jp�1kp�1ðEpjpÞr � C1jpkpðEpþ1jpþ1Þr ðA:2Þ

is the spectral transfer term in the forward direction, and from Eq.
(9), r ¼ 1

2.
In order to determine the slope of the turbulent energy spec-

trum we make the following assumptions:

 We may have a constant slope ‘‘�s” in a particular range of wave
number space:

EðjÞ ¼ AðtÞj�s ðA:3Þ


 The function A(t) depends only upon time, so the decay rate is
the same anywhere in the inertial subrange.


 The wave number mesh is uniform in the log-scale:

jpþ1 ¼ kjp ðA:4Þ

Consider three wave number bins in the inertial range and com-
pute the turbulent kinetic energy in these bins using Eq. (A.3):

kp ¼
Z jp

jp�1

AðtÞj�s dj ¼ AðtÞ
1� s

j1�s
p � j1�s

p�1

h i
;

p ¼ m� 1; . . . ;mþ 1 ðA:5Þ

The rate of transfer coefficient can be expressed as:

Ep �jp ¼
kp

Djp
�jp ¼

AðtÞ
1� s

j1�s
p � j1�s

p�1

h i �jp

Djp
;

p ¼ m� 1; . . . ;mþ 1 ðA:6Þ

Using Eq. (A.4) we can show that the last multiplier does not de-
pend on p:

�jp

Djp
¼

1
2 ðjp�1 þ jpÞ
jp � jp�1

¼
1
2 j0ðkp�1 þ kpÞ
j0ðkp � kp�1Þ

¼ 1
2

kþ 1
k� 1

;

p ¼ m� 1; . . . ;mþ 1 ðA:7Þ

Introducing n ¼ 1
2

kþ1
k�1 we can rewrite the rate of transfer coefficient

as:

Ep �jp ¼
AðtÞn
1� s

j1�s
p � j1�s

p�1

h i
; p ¼ m� 1; . . . ;mþ 1 ðA:8Þ

Substituting Eq. (A.5) into Eq. (A.1) for p = m and p = m + 1:

dAðtÞ
dt

j1�s
m � j1�s

m�1

1� s
¼ Tm

dAðtÞ
dt

j1�s
mþ1 � j1�s

m

1� s
¼ Tmþ1

ðA:9Þ

Eqs. (A.9) can be combined to obtain:

Tmþ1 j1�s
m � j1�s

m�1


 �
¼ Tm j1�s

mþ1 � j1�s
m


 �
ðA:10Þ

Using Eq. (A.2) we can rewrite (A.10) as:

C1jmkmEr
mþ1j

r
mþ1 � C1jmþ1kmþ1Er

mþ2j
r
mþ2


 �
j1�s

m � j1�s
m�1


 �
¼ C1jm�1km�1Er

mjr
m � C1jmkmEr

mþ1j
r
mþ1


 �
j1�s

mþ1 � j1�s
m


 �
ðA:11Þ

Eqs. (A.5) and (A.8) can be used to eliminate the bin turbulent
kinetic energies from Eq. (A.11):

jm j1�s
m � j1�s

m�1

� 
j1�s

mþ1 � j1�s
m

� r
nr

�jmþ1 j1�s
mþ1 � j1�s

m

� 
½j1�s

mþ2 � j1�s
mþ1�

rnr

 !
j1�s

m � j1�s
m�1


 �

¼
jm�1 j1�s

m�1 � j1�s
m�2

� 
j1�s

m � j1�s
m�1

� r
nr

�jm j1�s
m � j1�s

m�1

� 
j1�s

mþ1 � j1�s
m

� r
nr

 !
j1�s

mþ1 � j1�s
m


 �
ðA:12Þ

Let us next use Eq. (A.4) to rewrite the wave numbers as:

jm�2 � x; jm�1 ¼ kx; jm ¼ k2x; jmþ1 ¼ k3x; jmþ2 ¼ k4x

ðA:13Þ
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Thus, Eq. (A.12), expressed in terms of k, x and s, becomes:

ðk2xÞ ðk2xÞ1�s�ðkxÞ1�s
h i

ðk3xÞ1�s�ðk2xÞ1�s
h ir

�ðk3xÞ ðk3xÞ1�s�ðk2xÞ1�s
h i

ðk4xÞ1�s�ðk3xÞ1�s
h ir

0
B@

1
CA ðk2xÞ1�s�ðkxÞ1�s
� �

¼
ðkxÞ½ðkxÞ1�s�x1�s� ðk2xÞ1�s�ðkxÞ1�s

h ir

�ðk2xÞ ðk2xÞ1�s�ðkxÞ1�s
h i

ðk3xÞ1�s�ðk2xÞ1�s
h ir

0
B@

1
CA ðk3xÞ1�s�ðk2xÞ1�s
� �

Next let us divide through by, [(kx)1�s � x1�s]((k2 x)1�s � (kx)1�s):

ðk2xÞk1�s ðk3xÞ1�s � ðk2xÞ1�s
h ir

� ðk3xÞðk2Þ1�s ðk4xÞ1�s � ðk3xÞ1�s
h ir� �

¼ ðkxÞ ðk2xÞ1�s � ðkxÞ1�s
h ir

� ðk2xÞk1�s ðk3xÞ1�s � ðk2xÞ1�s
h ir� �

k1�s

ðA:14Þ

Dividing Eq. (A.14) by x[(k2 x)1�s � (k x)1�s]r we obtain:

ðk2Þk1�s½k1�s�r � ðk3Þðk2Þ1�s½ðk2Þ1�s�r
� �
¼ ðkÞ � ðk2Þk1�s½k1�s�r

 �

k1�s ðA:15Þ

Thus for the powers of k:

k3þr�sð1þrÞ � k5þ2r�sð2þ2rÞ ¼ k2�s � k4þr�sð2þrÞ ðA:16Þ

Dividing Eq. (A.16) by k2�s:

k1þr�sr � k3þ2r�sð1þ2rÞ ¼ 1� k2þr�sð1þrÞ ðA:17Þ

and rearranging:

k1þrð1�sÞ � k2þð2rþ1Þð1�sÞ þ k1þð1�sÞð1þrÞ � 1 ¼ 0 ðA:18Þ

Thus,

k2ðk1�sÞ2rþ1 � kðk1�sÞ1þr � kðk1�sÞr þ 1 ¼ 0 ðA:19Þ

Introducing a new variable, y = k1�s: 1 � s = logky, s = 1 � logky, Eq.
(A.19) becomes:

k2y2rþ1 � ky1þr � kyr þ 1 ¼ 0 ðA:20Þ

In the single-phase spectral cascade model, r ¼ 1
2, thus:

k2y2 � ky3=2 � ky1=2 þ 1 ¼ 0 ðA:21Þ

This equation has 2 real and 2 complex roots. The real roots are:

y1 ¼ k�2=3; y2 ¼ k�2 ðA:22Þ

This corresponds to two negative slopes:

s1 ¼ 1� logkðk�2=3Þ ¼ 1� �2
3

� �
¼ 5

3
;

s2 ¼ 1� logkðk�2Þ ¼ 1� ð�2Þ ¼ 3 ðA:23Þ

Thus we have shown that the slope which is normally mea-
sured in the inertial subrange of turbulent single-phase flows,
�5/3, is consistent with the functional form of the transfer
terms in Eq. (13) and that it is independent of wave number
mesh spacing (k). Nevertheless, as noted in the text, issues
associated with the proper slope are complicated and deserve
further study.
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